The future of engineering will enable seamless collaboration using real-time visualizations in mixed reality, but current input techniques do not match user expectations or intuitions. Our work with ProtoSpace involved designing a new controller input method and gathering insights into designing for mixed reality.

VERSATILE USER INTERFACE
Multiple orientations enable users to hold the controller with one or two hands, allowing them to use gestures in combination with the controller.

ADDED GRANULARITY
Incremental controls increase accuracy in object manipulations such as moving, rotating, and scaling.

EFFICIENT PERFORMANCE
Menu shortcuts permit users to quickly access and switch between commonly used modes.

USER EXPECTATIONS
Users wanted mixed reality environments to behave like their real-world counterparts. For example, mechanical engineers expected inputs to mirror those of traditional CAD software.

INTERACTION DESIGN
When designing interactions for mixed reality, consider degrees of freedom tracking, interface complexity, and whether users will be required to use one or two hands, or none.

PROTOTYPING TECHNIQUES
Immersion is in the details. Providing real-time feedback for controller inputs and recreating the physical experience helped users feel as if they were interacting with a real system.

VERSATILE USER INTERFACE
Multiple orientations enable users to hold the controller with one or two hands, allowing them to use gestures in combination with the controller.

ADDED GRANULARITY
Incremental controls increase accuracy in object manipulations such as moving, rotating, and scaling.

EFFICIENT PERFORMANCE
Menu shortcuts permit users to quickly access and switch between commonly used modes.

KEY FINDINGS

- **USER EXPECTATIONS**
 Users wanted mixed reality environments to behave like their real-world counterparts. For example, mechanical engineers expected inputs to mirror those of traditional CAD software.

- **INTERACTION DESIGN**
 When designing interactions for mixed reality, consider degrees of freedom tracking, interface complexity, and whether users will be required to use one or two hands, or none.

- **PROTOTYPING TECHNIQUES**
 Immersion is in the details. Providing real-time feedback for controller inputs and recreating the physical experience helped users feel as if they were interacting with a real system.

DISCOVERY
Uncovered pain points around the gestural interface which was imprecise and difficult to learn, and disrupted design reviews.

DEFINITION
Insights revealed a tangible interface may be paired with the HoloLens to improve the ProtoSpace experience.

IDEATION
Explored input devices ranging from consumer hardware to future concepts.

PROTOTYPING & EVALUATION
Iterated input mapping based on insights from Wizard of Oz usability testing with 12 participants.

Special thanks to our sponsor Lauren Wheelwright at NASA Jet Propulsion Laboratory.