Design Heard:
Interpretations of the Design Process

Cynthia J. Atman, Ph.D.
Dharma Dailey
With special guests:
 Sound Improv Live!
January 16, 2017

Cindy Atman:
Mitchell T. & Lella Blanche Bowie Endowed Chair
Director, Center for Engineering Learning & Teaching (CELT)
Professor, Human Centered Design & Engineering (HCDE)
Co-Director, Consortium to Promote Reflection in Engineering Education (CPREE)
University of Washington
Seattle, Washington, USA
atman@uw.edu

This work was supported by National Science Foundation grants 9358516, 9714459, 9872498, 012554, 0227558, and 0354453; the Center for Engineering Learning & Teaching at the University of Washington, the Mitchell T. and Lella Blanche Bowie Endowment and the Guidrys for their sponsorship of this work.
Design Heard: Interpretations of the Design Process

Part 1: Capturing and Describing Design Processes
Part 2: Representing Design Processes
Many Collaborators...

- Collaborators, co-authors, and research team members include Robin Adams, Arif Ahmer, Brad Arneson, Theresa Barker, Maria Buan, Emma Bulojewski, Mary Besterfield-Sacre, Jim Blair, Carie Bodle, Laura Bogusch, Jim Borgford-Parnell, Karen Bursic, Ryan Campbell, Monica Cardella, Soomin Chang, Justin Chimka, Kate Deibel, Zach Goist, Brian Hayes, Melissa Jones, Aaron Joya, Allison Kang, Deborah Kilgore, Kristina Krause, Vipin Kumar, Alex Lew, Terri Lovins, Stefanie Lozito, Janet McDonnell, Annegrete Mølhave, Andrew Morozov, Susan Mosborg, Carie Mullins, Heather Nachtmann, Wai Ho Ng, Will Richey, Eddie Rhone, Axel Roesler, Wendy Roldan, Jason Saleem, Giovanna Scalone, Kathryn Shroyer, Elvia Sierra-Badillo, Roy Sunarso, Steve Tanimoto, Jennifer Turns, Cheryl Wang, Ken Yasuhara, and Mark Zachry...

- ...and over 75 additional undergraduate students
Who designs?

- “Everyone designs who devises courses of action aimed at changing existing situations into preferred ones” (Simon, 1969)
- Going from state “A” to state “B”
- To solve a problem, satisfy a need

Who designs?

- Architects, authors, engineers, chefs, musicians, landscape architects...
- All of us
Design Process:
Going from state “A” to state “B”

► Examples

● Improv performers
 ▪ Prompt - > performance

● Landscape architects
 ▪ Empty yard - > garden

● Chefs, moms, dads...
 ▪ Empty plate - > dinner

● Author
 ▪ Blank page - > poem
Design Process:
Going from state “A” to state “B”

- Engineering examples
 - Improve human health -> MRI machines, heart valves, etc.
 - Need to go from one side of a river to another -> ferry system, bridge, etc.
 - Desire to explore -> space program
 - Deal with pests in garden -> pesticide

- Possibility of unintended consequences
 - DDT (pesticide)
 - Hole in ozone (refrigeration, aerosols)
 - Failure of early heart valves
 - Bridge failures

Atman, April 2, 2018
A research program...

- Engineering is “design under constraint” (Bill Wulf, 1998)
- My research program – to understand how engineers design
 - Understand design expertise
- With the long term goal to figure out how to teach engineering students about the importance of understanding context
Examining Design Expertise: A Research Study

- **Task**
 - Design a playground for a fictitious neighborhood

- **Participants**
 - First-year engineering students ($n = 26$)
 - Graduating senior engineering students ($n = 24$)
 - Practicing engineering experts ($n = 19$)

- **Verbal protocol analysis**
 - Individuals had up to 3 hours in a lab setting
 - Think-aloud protocol
 - Segment and code transcripts with design process codes
Problem statement: Design a playground

- Subject to a set of constraints
 - most of the children who will use the playground will range from 1 to 10 years of age.
 - Twelve children should be kept busy at any one time.
 - There should be at least three different types of activities for the children.
 - Must be safe for the children,
 - Must remain outside all year long,
 - Must not cost too much,
 - Must comply with the Americans with Disabilities Act.

- Your design should use materials that are available at any hardware or lumber store.

- The playground must be ready for use in 2 months.
Why a playground?
Examining Design Expertise: A Research Study

Participants

- First Year Engineering Students
- Graduating Senior Engineering Students
- Practicing Engineering Expert

Verbal Protocol Analysis

- Participant: Designing Playground
- Researcher: Capturing Notes
- Audio Recording:
- 3 hours
Examining Design Expertise: A Research Study

► Task
 ● Design a playground for a fictitious neighborhood

► Participants
 ● First-year engineering students ($n = 26$)
 ● Graduating senior engineering students ($n = 24$)
 ● Practicing engineering experts ($n = 19$)

► Verbal protocol analysis
 ● Individuals had up to 3 hours in a lab setting
 ● Think-aloud protocol
 ● Segment and code transcripts with design process codes
Defining design: Design process activities
Derived from analysis of 7 engineering texts

<table>
<thead>
<tr>
<th>Design Activities</th>
<th>Design Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Identification of a Need)</td>
<td></td>
</tr>
<tr>
<td>Problem Definition</td>
<td>Problem Scoping</td>
</tr>
<tr>
<td>Information Gathering</td>
<td></td>
</tr>
<tr>
<td>Generation of Ideas</td>
<td>Developing Alternative Solutions</td>
</tr>
<tr>
<td>Modeling</td>
<td></td>
</tr>
<tr>
<td>Feasibility of analysis</td>
<td></td>
</tr>
<tr>
<td>Evaluation</td>
<td></td>
</tr>
<tr>
<td>Decision</td>
<td>Project Realization</td>
</tr>
<tr>
<td>Communication (Implementation)</td>
<td></td>
</tr>
</tbody>
</table>
Defining design: Design process activities

Derived from analysis of 7 engineering texts

<table>
<thead>
<tr>
<th>Design Activities</th>
<th>Transcript Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Identification of a Need)</td>
<td></td>
</tr>
<tr>
<td>Problem Definition</td>
<td>“Any equipment you design must be safe for the children”</td>
</tr>
<tr>
<td>Information Gathering</td>
<td>“Hmmm do you have, a list of materials”</td>
</tr>
<tr>
<td>Generation of Ideas</td>
<td>“Trying to think what should be more sturdy.”</td>
</tr>
<tr>
<td>Modeling</td>
<td>“I won't need supports in the middle, but I'll need ...”</td>
</tr>
<tr>
<td>Feasibility of analysis</td>
<td>“ok, so.. around two thousand dollars left.”</td>
</tr>
<tr>
<td>Evaluation</td>
<td>“not softwood, hardwood is too expensive.”</td>
</tr>
<tr>
<td>Decision</td>
<td>“I think we should...use galvanized steel.”</td>
</tr>
<tr>
<td>Communication</td>
<td>Ok. I'm just making instructions...</td>
</tr>
<tr>
<td>(Implementation)</td>
<td></td>
</tr>
</tbody>
</table>
Examining Design Expertise: A Research Study

Verbal Protocol Analysis

3 hours

Participant: Designing Playground

Researcher: Capturing Notes

Audio Recording:

Transcribe

Code

Represent as Timelines

Problem Definition

Information Gathering

Idea Generation
A design process timeline

First-Year (Quality Score = 0.45)

<table>
<thead>
<tr>
<th>PD: Problem Definition</th>
<th>FEAS: Feasibility Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>GATH: Gathering Information</td>
<td>EVAL: Evaluation</td>
</tr>
<tr>
<td>GEN: Generating Ideas</td>
<td>DEC: Decision Making</td>
</tr>
<tr>
<td>MOD: Modeling</td>
<td>COM: Communication</td>
</tr>
</tbody>
</table>
A design process timeline – gather info

“Hmmm do you have, a list of materials”

First-Year (Quality Score = 0.45)

PD: Problem Definition
GATH: Gathering Information
GEN: Generating Ideas
MOD: Modeling
FEAS: Feasibility Analysis
EVAL: Evaluation
DEC: Decision Making
COM: Communication
A design process timeline - modeling

“I won't need supports in the middle, but I'll need...

First-Year (Quality Score = 0.45)

PD: Problem Definition
GATH: Gathering Information
GEN: Generating Ideas
MOD: Modeling
FEAS: Feasibility Analysis
EVAL: Evaluation
DEC: Decision Making
COM: Communication
First-Year engineering students

Low Quality Score

Average Quality Score

High Quality Score

Atman, April 2, 2018
Graduating engineering students
What do you see?

What similarities and differences do you see between the first-year and graduating senior engineering students?

Do these similarities also involve the quality scores?
Work with a partner to explore the following

In the design process timelines shown on the first page:

- What similarities and differences do you see between the first year and graduating senior engineering students?
- Do these similarities or differences also involve the quality scores? How so?
Design process research findings

- Compared to first-year students, *graduating seniors*...
 - have higher-quality designs.
 - scope the problem more effectively by considering more categories of information.
 - make more transitions among design activities.
 - progress farther in the design process.
- (These differences are statistically significant.)

(Atman, Chimka, Bursic, & Nachtmann, 1999)
Selected student insights

► “The highest quality scores in both groups use a greater range of activities, instead of just modeling.”
► “Problem definition is key to the overall project. Remind yourself of what you are doing and what is really being asked. Pick your head up from the paper (modeling!) and analyze the problem.”
► “Success is strongly correlated with gathering data and defining the problem early on.”

(Borgford-Parnell, Deibel & Atman, 2010)
Selected student insights

Graduating Senior (Quality Score = 0.63)

(Atman, Chimka, Bursic, & Nachtman, 1999)
Engineering experts

High Quality Score

Average Quality Score

Low Quality Score
Compared to students, experts...
- spend more time solving the problems in all design stages.
- consider more objects in their design process.
- scope the problem more effectively by gathering more information (explicitly) and covering more categories.
- exhibit a “cascade” pattern of transitions.

(These differences are statistically significant.)

(Atman, Adams, Cardella, Turns, Mosborg, & Saleem, 2007)
What should we teach about design processes?

- Spend enough time understanding the problem up front
 - Understand the problem context
 - Be intentional about problem framing
- Gather information throughout the process
- Revisit the problem definition throughout the process
- Use a broad set of design activities
- Iterate and transition among design activities
- Spend a sufficient time modelling
- Spend enough time to solve the problem
Design Heard: Interpretations of the Design Process

Part 1: Capturing and Describing Design Processes

Part 2: Representing Design Processes
Design process representations

I. Research
Discover goals & needs

II. Ideate
Generate ideas

III. Prototype
Determine usability & usefulness

IV. Evaluate
Build, Measure, Learn

V. Produce
Discover goals & needs

PD
GATH
GEN
MOD
FEAS
EVAL
DEC
COM

Identification of a Need
Problem Definition (PD)
Information Gathering (GATH)
Generation of Idea (GEN)
Modeling (MOD)
Feasibility Analysis (FEAS)
Evaluation (EVAL)
Decision (DEC)
Communication (COM)
Implementation
Once you see a timeline....
... you can see timelines everywhere!
Using Representations to Teach Design

The harder I work, the luckier I get.

(McDonnell, & Atman, 2015; Atman et al., 2015)
Music??
What does design sound like?

Design soundtracks

Tonal Soundtrack: Original Senior C (927)
The Tonal version of design soundtracks is the most literal of all version. Each design activity is mapped to a specific pure tone on the pentatonic scale, with Problem Definition (PD) having the highest pitch. The start and stop of each tone is sharp and tightly tied to the underlying time-series data.

As with all design soundtracks, each activity's sound separation is noted in the sound samples table to the

Jazz teacher perspectives

Clarence Acox

Bob Knatt
Jazz perspectives

► “Generating ideas...from the jazz process, that automatically comes from the creative aspect of improvisation.” (Acox)

► “If you wanted to use all these [three freshman timelines], it would be a full jazz band.” (Acox)

► Knatt saw the timelines as representing the collaborative process that Dizzy Gillespie and Charlie Parker engaged in while composing Anthropology, “one of the most exciting and legendary charts.”
The blank signature, Magritte, 1965
Design Heard: Interpretations of the Design Process

Part 1: Capturing and Describing Design Processes

Part 2: Representing Design Processes

Part 3: Musical response by “Sound Improv Live!”
Musical Response by “Sound Improv Live!”

- After this brief introduction to design expertise research and timeline representations
- Improv singing group “Sound Improv Live!” explored interpretations of what they heard
- Here we hear their first impression response to several of the timelines
- Sound Improv Live! Members:
 - Van Calvez, Christine Castigliano, Dharma Dailey, Chris Hille, Liz Kohlenberg, Thea LaCross, Marline Lesh, Cindy Pickreign, Sherry Serra, Debby Boland Watt
Musical Response by “Sound Improv Live!”

First we hear a more literal response to timeline representations of three first-year students; with low, average and high artifact quality.
Next we hear a more abstract response, expressing the layered, nuanced and complex interaction that a design process can aspire to.

![Diagram showing expertise and artifact quality]
More information about this work

► Design Teaching/Learning

► Design Expertise

► Design Process Representations

► Design Awareness